Search results for "Jacobian matrix and determinant"

showing 10 items of 47 documents

On the minimal number of singular fibers with non-compact Jacobians for families of curves over P1

2016

Abstract Let f : X → P 1 be a non-isotrivial family of semi-stable curves of genus g ≥ 1 defined over an algebraically closed field k. Denote by s nc the number of the singular fibers whose Jacobians are non-compact. We prove that s nc ≥ 5 if k = C and g ≥ 5 ; we also prove that s nc ≥ 4 if char ( k ) > 0 and the relative Jacobian of f is non-smooth.

0301 basic medicineDiscrete mathematicsPure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematics01 natural sciences03 medical and health sciencessymbols.namesakeMathematics::Algebraic Geometry030104 developmental biologyGenus (mathematics)Jacobian matrix and determinantFamily of curvessymbols0101 mathematicsAlgebraically closed fieldMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Ejection and collision orbits of the spatial restricted three-body problem

1985

We begin by describing the global flow of the spatial two body rotating problem, μ=0. The remainder of the work is devoted to study the ejection and collision orbits when μ>-0. We make use of the ‘blow up’ techniques to show that for any fixed value of the Jacobian constant the set of these orbits is diffeomorphic to S2×R. Also we find some particular collision-ejection orbits.

Applied MathematicsAstronomy and AstrophysicsTwo-body problemThree-body problemCollisionCelestial mechanicsComputational Mathematicssymbols.namesakeClassical mechanicsSpace and Planetary ScienceModeling and SimulationAutomotive EngineeringJacobian matrix and determinantsymbolsOrbit (dynamics)Astrophysics::Earth and Planetary AstrophysicsRemainderConstant (mathematics)Mathematical PhysicsMathematicsCelestial Mechanics
researchProduct

A Fast Imaging Technique Applied to 2D Electrical Resistivity Data

2014

A new technique is proposed to process 2D apparent resistivity datasets, in order to obtain a fast and contrasted resistivity image, useful for a rapid data check in field or as a starting model to constrain the inversion procedure. In the past some modifications to the back-projection algorithm, as well as the use of filtering techniques for the sensitivity matrix were proposed. An implementation of this technique is proposed here, considering a two-step approach. Initially a damped least squares solution is obtained after a full matrix inversion of the linearized geoelectrical problem. Furthermore, on the basis of the results, a subsequent filtering algorithm is applied to the Jacobian ma…

Article SubjectComputer sciencelcsh:QC801-809Apparent resistivityInversion (meteorology)Least squaresSynthetic datalcsh:Geophysics. Cosmic physicssymbols.namesakeGeophysicsElectrical resistivity and conductivityFull matrixSettore GEO/11 - Geofisica ApplicataJacobian matrix and determinantsymbolsImaging techniqueAlgorithmERT back-projection LSQR inversion resistivityWater Science and TechnologyInternational Journal of Geophysics
researchProduct

Approximate Osher–Solomon schemes for hyperbolic systems

2016

This paper is concerned with a new kind of Riemann solvers for hyperbolic systems, which can be applied both in the conservative and nonconservative cases. In particular, the proposed schemes constitute a simple version of the classical Osher-Solomon Riemann solver, and extend in some sense the schemes proposed in Dumbser and Toro (2011) 19,20. The viscosity matrix of the numerical flux is constructed as a linear combination of functional evaluations of the Jacobian of the flux at several quadrature points. Some families of functions have been proposed to this end: Chebyshev polynomials and rational-type functions. Our schemes have been tested with different initial value Riemann problems f…

Chebyshev polynomialsApplied MathematicsNumerical analysisMathematical analysis010103 numerical & computational mathematics01 natural sciencesRiemann solverEuler equations010101 applied mathematicsComputational Mathematicssymbols.namesakeRiemann hypothesisRiemann problemJacobian matrix and determinantsymbols0101 mathematicsShallow water equationsMathematicsApplied Mathematics and Computation
researchProduct

A secular equation for the Jacobian matrix of certain multispecies kinematic flow models

2010

Computational MathematicsNumerical Analysissymbols.namesakeFlow (mathematics)Applied MathematicsMathematical analysisJacobian matrix and determinantSecular equationsymbolsKinematicsAnalysisMathematicsNumerical Methods for Partial Differential Equations
researchProduct

Spectral WENO schemes with Adaptive Mesh Refinement for models of polydisperse sedimentation

2012

The sedimentation of a polydisperse suspension with particles belonging to N size classes (species) can be described by a system of N nonlinear, strongly coupled scalar first-order conservation laws. Its solutions usually exhibit kinematic shocks separating areas of different composition. Based on the so-called secular equation [J. Anderson, Lin. Alg. Appl. 246, 49–70 (1996)], which provides access to the spectral decomposition of the Jacobian of the flux vector for this class of models, Burger et al. [J. Comput. Phys. 230, 2322–2344 (2011)] proposed a spectral weighted essentially non-oscillatory (WENO) scheme for the numerical solution of the model. It is demonstrated that the efficiency …

Conservation lawAdaptive mesh refinementApplied MathematicsComputational MechanicsScalar (physics)KinematicsSuspension (topology)Matrix decompositionNonlinear systemsymbols.namesakeClassical mechanicsJacobian matrix and determinantsymbolsApplied mathematicsMathematicsZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
researchProduct

On the hyperbolicity of certain models of polydisperse sedimentation

2012

The sedimentation of a polydisperse suspension of small spherical particles dispersed in a viscous fluid, where particles belong to N species differing in size, can be described by a strongly coupled system of N scalar, nonlinear first-order conservation laws for the evolution of the volume fractions. The hyperbolicity of this system is a property of theoretical importance because it limits the range of validity of the model and is of practical interest for the implementation of numerical methods. The present work, which extends the results of R. Burger, R. Donat, P. Mulet, and C.A. Vega (SIAM Journal on Applied Mathematics 2010; 70:2186–2213), is focused on the fluxes corresponding to the …

Conservation lawGeneral MathematicsNumerical analysisMathematical analysisGeneral EngineeringRational functionNonlinear systemsymbols.namesakeLinear algebraDiagonal matrixJacobian matrix and determinantsymbolsEigenvalues and eigenvectorsMathematics
researchProduct

Flux-gradient and source-term balancing for certain high resolution shock-capturing schemes

2009

Abstract We present an extension of Marquina’s flux formula, as introduced in Fedkiw et al. [Fedkiw RP, Merriman B, Donat R, Osher S. The penultimate scheme for systems of conservation laws: finite difference ENO with Marquina’s flux splitting. In: Hafez M, editor. Progress in numerical solutions of partial differential equations, Arcachon, France; July 1998], for the shallow water system. We show that the use of two different Jacobians at cell interfaces prevents the scheme from satisfying the exact C -property [Bermudez A, Vazquez ME. Upwind methods for hyperbolic conservation laws with source terms. Comput Fluids 1994;23(8):1049–71] while the approximate C -property is satisfied for high…

Conservation lawPartial differential equationGeneral Computer ScienceGeneral EngineeringFinite differenceFluxGeometryTerm (logic)symbols.namesakeScheme (mathematics)Jacobian matrix and determinantsymbolsOrder (group theory)Applied mathematicsMathematicsComputers & Fluids
researchProduct

Numerical decomposition of geometric constraints

2005

Geometric constraint solving is a key issue in CAD/CAM. Since Owen's seminal paper, solvers typically use graph based decomposition methods. However, these methods become difficult to implement in 3D and are misled by geometric theorems. We extend the Numerical Probabilistic Method (NPM), well known in rigidity theory, to more general kinds of constraints and show that NPM can also decompose a system into rigid subsystems. Classical NPM studies the structure of the Jacobian at a random (or generic) configuration. The variant we are proposing does not consider a random configuration, but a configuration similar to the unknown one. Similar means the configuration fulfills the same set of inci…

Constraint (information theory)AlgebraSet (abstract data type)symbols.namesakeMathematical optimizationProbabilistic methodJacobian matrix and determinantsymbolsStructure (category theory)CADGas meter proverMathematicsIncidence (geometry)Proceedings of the 2005 ACM symposium on Solid and physical modeling
researchProduct

Point counting on Picard curves in large characteristic

2005

We present an algorithm for computing the cardinality of the Jacobian of a random Picard curve over a finite field. If the underlying field is a prime field Fp, the algorithm has complexity O(p).

Discrete mathematicsAlgebra and Number TheoryApplied MathematicsJacobian varietyGeometryField (mathematics)Computational Mathematicssymbols.namesakeMathematics::Algebraic GeometryFinite fieldPoint countingCardinalityJacobian matrix and determinantsymbolsPicard hornPrime fieldMathematicsMathematics of Computation
researchProduct