Search results for "Jacobian matrix and determinant"
showing 10 items of 47 documents
On the minimal number of singular fibers with non-compact Jacobians for families of curves over P1
2016
Abstract Let f : X → P 1 be a non-isotrivial family of semi-stable curves of genus g ≥ 1 defined over an algebraically closed field k. Denote by s nc the number of the singular fibers whose Jacobians are non-compact. We prove that s nc ≥ 5 if k = C and g ≥ 5 ; we also prove that s nc ≥ 4 if char ( k ) > 0 and the relative Jacobian of f is non-smooth.
Ejection and collision orbits of the spatial restricted three-body problem
1985
We begin by describing the global flow of the spatial two body rotating problem, μ=0. The remainder of the work is devoted to study the ejection and collision orbits when μ>-0. We make use of the ‘blow up’ techniques to show that for any fixed value of the Jacobian constant the set of these orbits is diffeomorphic to S2×R. Also we find some particular collision-ejection orbits.
A Fast Imaging Technique Applied to 2D Electrical Resistivity Data
2014
A new technique is proposed to process 2D apparent resistivity datasets, in order to obtain a fast and contrasted resistivity image, useful for a rapid data check in field or as a starting model to constrain the inversion procedure. In the past some modifications to the back-projection algorithm, as well as the use of filtering techniques for the sensitivity matrix were proposed. An implementation of this technique is proposed here, considering a two-step approach. Initially a damped least squares solution is obtained after a full matrix inversion of the linearized geoelectrical problem. Furthermore, on the basis of the results, a subsequent filtering algorithm is applied to the Jacobian ma…
Approximate Osher–Solomon schemes for hyperbolic systems
2016
This paper is concerned with a new kind of Riemann solvers for hyperbolic systems, which can be applied both in the conservative and nonconservative cases. In particular, the proposed schemes constitute a simple version of the classical Osher-Solomon Riemann solver, and extend in some sense the schemes proposed in Dumbser and Toro (2011) 19,20. The viscosity matrix of the numerical flux is constructed as a linear combination of functional evaluations of the Jacobian of the flux at several quadrature points. Some families of functions have been proposed to this end: Chebyshev polynomials and rational-type functions. Our schemes have been tested with different initial value Riemann problems f…
A secular equation for the Jacobian matrix of certain multispecies kinematic flow models
2010
Spectral WENO schemes with Adaptive Mesh Refinement for models of polydisperse sedimentation
2012
The sedimentation of a polydisperse suspension with particles belonging to N size classes (species) can be described by a system of N nonlinear, strongly coupled scalar first-order conservation laws. Its solutions usually exhibit kinematic shocks separating areas of different composition. Based on the so-called secular equation [J. Anderson, Lin. Alg. Appl. 246, 49–70 (1996)], which provides access to the spectral decomposition of the Jacobian of the flux vector for this class of models, Burger et al. [J. Comput. Phys. 230, 2322–2344 (2011)] proposed a spectral weighted essentially non-oscillatory (WENO) scheme for the numerical solution of the model. It is demonstrated that the efficiency …
On the hyperbolicity of certain models of polydisperse sedimentation
2012
The sedimentation of a polydisperse suspension of small spherical particles dispersed in a viscous fluid, where particles belong to N species differing in size, can be described by a strongly coupled system of N scalar, nonlinear first-order conservation laws for the evolution of the volume fractions. The hyperbolicity of this system is a property of theoretical importance because it limits the range of validity of the model and is of practical interest for the implementation of numerical methods. The present work, which extends the results of R. Burger, R. Donat, P. Mulet, and C.A. Vega (SIAM Journal on Applied Mathematics 2010; 70:2186–2213), is focused on the fluxes corresponding to the …
Flux-gradient and source-term balancing for certain high resolution shock-capturing schemes
2009
Abstract We present an extension of Marquina’s flux formula, as introduced in Fedkiw et al. [Fedkiw RP, Merriman B, Donat R, Osher S. The penultimate scheme for systems of conservation laws: finite difference ENO with Marquina’s flux splitting. In: Hafez M, editor. Progress in numerical solutions of partial differential equations, Arcachon, France; July 1998], for the shallow water system. We show that the use of two different Jacobians at cell interfaces prevents the scheme from satisfying the exact C -property [Bermudez A, Vazquez ME. Upwind methods for hyperbolic conservation laws with source terms. Comput Fluids 1994;23(8):1049–71] while the approximate C -property is satisfied for high…
Numerical decomposition of geometric constraints
2005
Geometric constraint solving is a key issue in CAD/CAM. Since Owen's seminal paper, solvers typically use graph based decomposition methods. However, these methods become difficult to implement in 3D and are misled by geometric theorems. We extend the Numerical Probabilistic Method (NPM), well known in rigidity theory, to more general kinds of constraints and show that NPM can also decompose a system into rigid subsystems. Classical NPM studies the structure of the Jacobian at a random (or generic) configuration. The variant we are proposing does not consider a random configuration, but a configuration similar to the unknown one. Similar means the configuration fulfills the same set of inci…
Point counting on Picard curves in large characteristic
2005
We present an algorithm for computing the cardinality of the Jacobian of a random Picard curve over a finite field. If the underlying field is a prime field Fp, the algorithm has complexity O(p).